Electrical conduction by interface states in semiconductor heterojunctions
نویسندگان
چکیده
Electrical conduction in semiconductor heterojunctions containing defect states in the interface region is studied. As the classical drift-diffusion mechanism cannot in any case explain electrical conduction in semiconductor heterojunctions, tunnelling involving interface states is often considered as a possible conduction path. A theoretical treatment is made where defect states in the interface region with a continuous energy distribution are included. Electrical conduction through this defect band then allows the transit of electrons from the conduction band of one semiconductor to the valence band of the second component. The analysis is initiated by electrical measurements on n-CdS/p-CdTe heterojunctions obtained by chemical vapour deposition of CdS on (111) oriented CdTe single crystals, for which current-voltage and capacitance-frequency results are shown. The theoretical analysis is based on the numerical resolution of Poisson's equation and the continuity equations of electrons, holes and defect states, where a current component corresponding to the defect band conduction is explicitly included. Comparison with the experimental curves shows that this formalism yields an efficient tool to model the conduction process through the interface region. It also allows us to determine critical values of the physical parameters when a particular step in the conduction mechanism becomes dominant.
منابع مشابه
Defective Heterojunction Models
Fermi-level pinning behavior has been observed at the free surface, oxide interface, metal interface, MBE grown surface, stop-regrown homojunction, and misfit-dislocation pinned heterojunction of GaAs. Theories of such behavior are numerous and disparate. Theories of ideal heterojunction band offsets are less diverse, but have still not converged to a single mechanism. Recent studies of heteroj...
متن کاملModulation of electrical potential and conductivity in an atomic-layer semiconductor heterojunction
Semiconductor heterojunction interfaces have been an important topic, both in modern solid state physics and in electronics and optoelectronics applications. Recently, the heterojunctions of atomically-thin transition metal dichalcogenides (TMDCs) are expected to realize one-dimensional (1D) electronic systems at their heterointerfaces due to their tunable electronic properties. Herein, we repo...
متن کاملناپیوستگیهای نواری در ابرشبکههایی با لایههای کرنش یافته
Band offsets at semiconductor heterojunctions have been shown to be critically dependent on a number of factors. By applying the ab-initio pseudopotential method to the strained InGaAs/GaAs superlattice, we have been able to determine the dependence of the offsets on the strain in the system and on the indium composition. In addition, we have shown that it is possible to control the interface...
متن کاملRole of the Charge Neutrality Level at Metal/Organic and Organic/Organic Interfaces
This paper describes how the concepts of Charge Neutrality Level (CNL) and Induced Density of Interface States (IDIS) can successfully explain the energy level alignment at metal-organic and organic-organic interfaces. We propose that the CNL acts as an effective Fermi level for the organic semiconductor: its partial alignment with the metal Fermi level (in the case of metal-organic interfaces)...
متن کاملEnergy level alignment at organic heterojunctions: Role of the charge neutrality level
We present a mechanism that explains the energy-level alignment at organic-organic sOOd semiconductor heterojunctions. Following our work on metal/organic interfaces, we extend the concepts of charge neutrality level sCNLd and induced density of interface states to OO interfaces, and propose that the energy-level alignment is driven by the alignment of the CNLs of the two organic semiconductors...
متن کامل